Singular solutions for semilinear elliptic equations with general supercritical growth

نویسندگان

چکیده

Abstract A positive radial singular solution for $$\Delta u+f(u)=0$$ Δ u + f ( ) = 0 with a general supercritical growth is constructed. An exact asymptotic expansion as well its uniqueness in the space of functions are also established. These results can be applied to bifurcation problem u+\lambda f(u)=0$$ λ on ball. Our method treat wide class nonlinearities unified way, e.g., $$u^p\log u$$ p log , $$\exp (u^p)$$ exp and (\cdots \exp (u)\cdots )$$ ⋯ $$u^p$$ $$e^u$$ e . Main technical tools intrinsic transformations semilinear elliptic equations ODE techniques.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Solutions for some Semilinear Elliptic Equations

We are concerned with the behavior of u near x = O. There are two distinct cases: 1) When p >= N / ( N -2) and (N ~ 3) it has been shown by BR~ZIS & V~RON [9] that u must be smooth at 0 (See also BARAS & PIERRE [1] for a different proof). In other words, isolated singularities are removable. 2) When 1-< p < N / ( N 2) there are solutions of (1) with a singularity at x ---0. Moreover all singula...

متن کامل

Bubble towers for supercritical semilinear elliptic equations

Abstract : We construct positive solutions of the semilinear elliptic problem ∆u + λu + up = 0 with Dirichet boundary conditions, in a bounded smooth domain Ω ⊂ RN (N ≥ 4), when the exponent p is supercritical and close enough to N+2 N−2 and the parameter λ ∈ R is small enough. As p → N+2 N−2 , the solutions have multiple blow up at finitely many points which are the critical points of a functi...

متن کامل

Weakly and strongly singular solutions of semilinear fractional elliptic equations

If p ∈ (0, N N−2α ), α ∈ (0, 1), k > 0 and Ω ⊂ R is a bounded C domain containing 0 and δ0 is the Dirac measure at 0, we prove that the weak solution of (E)k (−∆) u + u = kδ0 in Ω which vanishes in Ω is a weak singular solution of (E)∞ (−∆) u + u = 0 in Ω \ {0} with the same outer data. Furthermore, we study the limit of weak solutions of (E)k when k → ∞. For p ∈ (0, 1+ 2α N ], the limit is inf...

متن کامل

Partial Regularity for Weak Solutions of Semilinear Elliptic Equations with Supercritical Exponents

Let Ω be an open subset in R (n ≥ 3). In this paper, we study the partial regularity for stationary positive weak solutions of the equation (1.1) ∆u + h1(x)u + h2(x)u = 0 in Ω. We prove that if α > n+2 n−2 , and u ∈ H(Ω) ∩ L(Ω) is a stationary positive weak solution of (1.1), then the Hausdorff dimension of the singular set of u is less than n−2α+1 α−1 , which generalizes the main results in Pa...

متن کامل

Multiplicity of Solutions for Singular Semilinear Elliptic Equations with Critical Hardy-sobolev Exponents

where Ω ⊂ R(N ≥ 4) is an open bounded domain with smooth boundary, β > 0, 0 ∈ Ω, 0 ≤ s < 2, 2∗(s) := 2(N − s) N − 2 is the critical Hardy-Sobolev exponent and, when s = 0, 2∗(0) = 2N N − 2 is the critical Sobolev exponent, 0 ≤ μ < μ := (N − 2) 4 . In [1] A. Ferrero and F. Gazzola investigated the existence of nontrivial solutions for problem (1.1) with β = 1, s = 0. In [2] D. S. Kang and S. J. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata

سال: 2022

ISSN: ['1618-1891', '0373-3114']

DOI: https://doi.org/10.1007/s10231-022-01244-4